3. C.J. Small, C.O. Too, G.G. Wallace, Responsive conducting polymer-hydrogel composites.
Polym Gels Networks 5 (1997) 251–265.
4. S.Y. Kim, G.T.R. Palmore, Conductive hydrogel for bio-electrocatalytic reduction of di
oxygen. Electrochem commun 23 (2012) 90–93.
5. C.N. Kotanen, C. Tlili, A. Guiseppi-Elie, Amperometric glucose biosensor based on elec
troconductive hydrogels. Talanta 103 (2013) 228–235.
6. R. Dong, X. Zhao, B. Guo, P.X. Ma, Self-healing conductive injectable hydrogels with anti
bacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interfaces 8
(2016) 17138–17150.
7. Y. Lu, W. He, T. Cao, H. Guo, Y. Zhang, Q. Li, Z. Shao, Y. Cui, X. Zhang, Elastic, conductive,
polymeric hydrogels and sponges. Sci Rep 4 (2014) 5792.
8. M. Harijan, M. Singh, Zwitterionic polymers in drug delivery: A Review. J Mol Recogn 35
(2022) e2944.
9. J. Wu, Z. Xiao, C. He, J. Zhu, G. Ma, G. Wang, H. Zhang, J. Xiao, S. Chen, Protein diffusion
characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine
methacrylate) (pSBMA), Acta Biomaterialia 40 (2016) 172–181.
10. G. Cheng, L. Mi, Z. Cao, H. Xue, Q. Yu, L. Carr, S. Jiang, Functionalizable and ultrastable
zwitterionic nanogels, Langmuir 26 (2010) 6883–6886.
11. A. Keller, J. Pham, H. Warren, M. Panhuis, Conducting hydrogels for edible electrodes.
J Mater Chem B 5 (2017) 5318–5328.
12. H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel-elastomer hybrids
with robust interfaces and functional microstructures. Nat Commun 7 (2016) 1–11.
13. G. Kaklamani, D. Kazaryan, J. Bowen, F. Lacovella, S.H. Anastasiadis, G. Deligeorgis, On the
electrical conductivity of alginate hydrogels. Regen Biomater 5 (2018) 293–301.
14. S. Zhao, P. Tseng, J. Grasman, Y. Wang, W. Li, B. Napier, B. Yavuz, Y. Chen, L. Howell,
J. Rincon, F.G. Omenetto, D.L. Kaplan, Programmable hydrogel ionic circuits for biologically
matched electronic interfaces. Adv Mater 30 (2018) 1–10.
15. S.J. Devaki, R.K. Narayanan, S. Sarojam, Electrically conducting silver nanoparticle-polyacrylic
acid hydrogel by in situ reduction and polymerization approach. Mater Lett 116 (2014) 135–138.
16. D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, G. Yu, Highly sensitive glucose
sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures, ACS Nano 7 (2013)
3540–3546.
17. S. Sayyar, E. Murray, B.C. Thompson, J. Chung, D.L. Officer, S. Gambhir, G.M. Spinks,
G.G. Wallace, Processable conducting graphene/chitosan hydrogels for tissue engineering.
J Mater Chem B 3 (2015) 481–490.
18. L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C.W. Chan, Y. Tang, L.T.
Weng, H. Yuan, A mussel-inspired conductive, self-adhesive, and self-healable tough hy
drogel as cell stimulators and implantable bioelectronics. Small 13 (2017) 1–9.
19. H. Jo, M. Sim, S. Kim, S. Kim, S. Yang, Y. Yoo, J.H. Park, T.H. Yoon, M.G. Kim, J.Y. Lee,
Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical re
duction for enhanced myoblast growth and differentiation. Acta Biomater 48 (2017) 100–109.
20. E. Castagnola, A. Ansaldo, E. Maggiolini, G.N. Angotzi, M. Skrap, D. Ricci, L. Fadiga,
Biologically compatible neural interface to safely couple nanocoated electrodes to the surface
of the brain. ACS Nano 7 (2013) 3887–3895.
21. E. Castagnola, E. Maggiolini, L. Ceseracciu, F. Ciarpella, E. Zucchini, S.D. Faveri, L. Fadiga,
D. Ricci, pHEMA encapsulated PEDOT-PSS-CNT microsphere microelectrodes for recording
single unit activity in the brain. Front Neurosci 10 (2016) 1–14.
22. S. Pok, F. Vitale, S.L. Eichmann, Biocompatible carbon nanotube-chitosan scaffold matching
the electrical conductivity of the heart. ACS Nano 8 (2014) 9822–9832.
23. K. Nyamayaro, P. Keyvani, F. D’Acierno, J. Poisson, Z.M. Hudson, C.A. Michal, J.D.W.
Madden, S.G. Hatzikiriakos, P. Mehrkhodavandi, Toward biodegradable electronics: ionic
diodes based on acellulose nanocrystal−agarose hydrogel. ACS Appl. Mater. Interfaces 12
(2020) 52182−52191.
Conductive Hydrogels for Bioelectronics
305